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e ED<R Introduction & Motivation

» Flows subjected to pressure gradients are hard to predict using lower-fidelity
simulation tools based on various turbulence models

= Reynolds-averaged Navier-Stokes (RANS) and wall-modeled Large-Eddy Simulation
(WMLES) methods are not completely satisfactory

» A new benchmark test case called the “speed bump” has been proposed to

further investigate flows subjected to pressure gradients
= (Gaussian profile that generates favorable and adverse pressure gradients

= A detailed experimental investigation campaign is planned in near future

» We perform a direct numerical simulation (DNS) for the speed bump flow using a
new flow solver developed for graphics processing units (GPUs)

» This talk reports the findings from our DNS results



“;Uf"“ 3-D Speed Bump Geometry

» Full geometry is defined by the following equation :
y(x,z) = 0.5h[1 + erf((0.5L — 225 — |z|)/zy)] exp[—(x/x0)?]
where h = 0.085L, xy = 0.195L, z, = 0.06L

1 1'side view
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1 Icross-section
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3-D geometry in tunnel L is the span, side walls are at: z/L = +0.5, ceiling is at: y/L = 0.5
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it ~9<! Direct Numerical Simulation Methodology

» New flow solver developed exclusively for graphics processing units (GPUSs)
» Compressible flow equations in generalized curvilinear coordinates

» Fully explicit schemes made up of many independent multiply-add type
operations at which the GPU excels :
= Optimized explicit 4""-order finite-difference with 6"-order filtering scheme for stability
= 3d-order, three-stage, explicit Runge-Kutta time integration scheme
= 2nd-order, single-stage, Adams-Bashforth time integration scheme with improved stability

» Hybrid combination of CUDA Fortran + MPIl + OpenMP :
= CUDA Fortran to launch computational kernels on the GPU
= Host-assisted MPlI communication among GPUs (“GPU-aware MPI” performance is very poor)

=  OpenMP for running multiple threads on the host CPU
* Master thread controls the GPU and launches the kernels
* 6 helper threads handle the MPI communication (one thread per face of a mesh block)
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s E<% GPU Code Performance

» GPU code provides a ~7.5x speedup over our CPU code :

= Comparison between one Intel Skylake node with 40 cores and one NVIDIA Tesla V100 GPU
with 16 Gigabytes of global memory

= These hardware are similar in price and power consumption
= Based on the shortest time taken to run a problem over a given physical time interval

» CPU code uses :
= High-order compact finite-difference schemes (which require a scalar tridiagonal solver)

= Explicit (third-order Runge-Kutta) or implicit (Beam-Warming) time integration schemes
= Same explicit scheme also used in the GPU code
= Max CFL number of about 1.3 with the explicit time integration scheme

= Max CFL number of about 5 for time accuracy with the implicit time integration scheme

» CPU code is fairly-well optimized for Intel CPUs
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GPU Code Parallel Scaling

» MPI communication is very slow compared to GPU computation :

If assigned too little work, the GPUs would sit idle while waiting for MPI to catch up
Poor strong-scaling performance because of slow communication relative to computation

To make the best use of limited resources, we assign the maximum possible workload to the
GPU and overlap as much communication with computation

In other words, we try to minimize the total node-hours, rather than the wall-clock run time

» We assign max workload to the GPU by maxing out the available memory :

Nearly 50 million points per 32 Gigabytes of memory on a NVIDIA Tesla V100 GPU

All data arrays are stored in the GPU memory

Chosen explicit schemes allow decoupling of points near block interfaces from interior points
Host-assisted MPI communication is overlapped with GPU computation

Multiple OpenMP threads running on the host CPU handle the MPl communication

Overlapping strategy leads to complicated code structure



“;Uf"“ Weak-Scaling Performance on Summit

» Test runs were performed with 142 million points per Summit node
=  Summit has 6 V100 GPUs per node, each with 16 Gigabytes of memory

» Number of nodes is increased while keeping the number of points per node fixed

150 -t = average time per step (milliseconds)
®
tstep |—— EEEEE—— EEE— .— ﬁan — —.
ﬂ ﬁ
®
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Number of Summit nodes

» About one nanosecond per grid point per Summit node per time time step
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e ED<R Spanwise-Periodic DNS Schematic

» Limited resources constrain us to spanwise-periodic DNS, with span set to 0.04L
» Reynolds number (based on upstream velocity and L) = 1 million
= |nflow momentum-thickness Reynolds number, Rey = 530; at x/L = —0.4, Reg = 1600
» Freestream Mach number = 0.2 (close to the expected experimental value)
» RANS data to set up mean inflow and top plane boundary conditions
» Turbulent inflow generation based on the recycling/rescaling method
» Viscous isothermal boundary condition on lower wall
» Sponge zone with characteristic boundary condition on outflow boundary
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e o Direct Numerical Simulation Details

» 2.265 billion grid points total

» Grid resolutions in wall units are discussed on the next slide

> Optimized explicit 4t"-order finite-difference with 6t"-order filtering scheme

> 3'9-order, three-stage, explicit Runge-Kutta time integration scheme

» 750,000 steps to compute a time interval of L/U,, (max CFL number of 0.86)
» 48 NVIDIA V100 GPUs at NAS, each with 32 GB memory, to perform the DNS
» Two months of run time to compute a time interval of 20 L/U,

» Code is stable up to the CFL number of about 1.3

» At CFL = 1.3, the DNS would have taken about 40 days

> Flow statistics are gathered over 15L/U,
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streamwise and spanwise spacing

Streamwise Variation of Grid Resolutions
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Largest streamwise spacing
in wall units: 6 to 8 units
Largest spanwise spacing in
wall units: 4.5 units
Wall-normal spacing at wall:
0.4 to 0.95 units

Largest wall-normal spacing
around boundary layer edge:
about 10 units
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— Surface Pressure Coefficient Distribution &
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Aemomc Comparison with RANS
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o Determination of Mean Boundary Layer
- Properties

» Spalart and Watmuff (JFM, 1993) proposed the following integrals based on
spanwise vorticity to compute boundary layer edge velocity & displacement and
momentum thicknesses for incompressible flow

Ue = A ~wWz (Yyw)dyw

R Y
0 = U_/ “YwWz (Yw)dyw
e JO

2

0 = —
U§ 0

0o Yw
Y [ /0 wz<n>dn] 02 (o) —

yw IS the wall-normal distance, w, is the mean spanwise vorticity
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— Determination of Mean Boundary Layer
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Pt Thickness

Velocity and F profiles

1° at the apex are shown
: — 0.1
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e or Variation of Mean Boundary Layer Properties

» Flow goes through significant changes caused by pressure gradients

k

O/L, 6 /L, 6/L HUJNU,C, C
06 | S/L A 1 1.6-_ -1.6 :
056 F  _ _ _ _ _ SYL ’ 3 d32 |1 ] 147 008
052 i 1 4151 . ) .
web 77T O/L HE S I P R From left to right, the quantities
TR e — H Z o 3 . 1 7' 1 .
044 % 4284149  J 006 plotted: |
wb T - UL 1 1 44 7 — boundary layer thickness
.036 — """"""""" gp . 1 1.3_5 0005 | — displacement thickness
032 F ror ok 1241 1 1 — momentum thickness
028 | # {1 11,4067 °%* | — shape factor
024 F . 17 : B .

- i 42 1 1444003 edge velocity N

02 F ; 1 d441 — surface pressure coefficient
016 | | Aqo2d002 | — skin-friction coefficient
o2k i RN NN e _ 1 ]
Rl - N s A S\ N 1841 |
.008 |~ S ; P R e ]l —0 -.001
004 :_ ..... :~\..~ -2.\ ;o "/- an s T -~ -.—,.:.:.:E ] E .

0 él Pl Bl |-'|—|-r§\—\ ol |*F'/=lﬂ‘| b o b b 1.2 j ng 0.2 - 0

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x/L 14



— Skin-Friction Coefficient Distribution &
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Aemomc Comparison with RANS
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o Incipient or Very Weak Separation in
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st Decelerating Region

» Flow visualization shows incipient or very weak separation in the aft section

.
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Flow Relaminarization/Stabilization in
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Accelerating Region

» Combination of low Reynolds number, strong favorable pressure gradient and
convex curvature leads to flow relaminarization/stabilization upstream of apex
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Normalized total
velocity contours on
a near-wall plane
where 4 s y/ <6

v is the wall-normal
distance in wall units

e
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Variation of Acceleration and

Relaminarization Parameters

» Variation of acceleration and relaminarization parameters (4, and K):

-

— — — — — — — —

. \
acceleration parameter, Ap \
——————— relaminarization parameter, K
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| 1E-06 p is the density

\ v is the kinematic viscosity
SE-07 u, is the friction velocity
. p is the pressure

s is the surface distance

SE07 U, is the edge velocity
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— Logarithmic Layer Breakdown in
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o Accelerating Region

25 r viscous sublayer equation (U" =y")
| ———— io/ia:fi;n]t;f layer equation (with < = 0.41 and C = 5.2585) Ap — 0.018 at Zﬁ ~ —0.19
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Mean Velocity Profiles in Accelerating Region

viscous sublayer equation (U' =y’)
————— logarithmic layer equation (with X = 0.41 and C =4.8) -

| xL=-04 = -

- ———— x/L=-0.3 o =

e x/L=-0.2 7 Sigrm———. .
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+

Vi

y-;; — yqu/V
U"=U/u,

v is the kinematic viscosity
u, is the friction velocity

U is the streamwise velocity
yw is the wall distance

Velocity profiles take
shapes resembling those of
relaminarizing boundary
layers as the accelerated
flow approaches the apex
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ermuTe o Surface Curvature Variation

AERDSPACE

Because of the

R/L goes to infinity at geometrical
x/L~-0.137886 symmetry with

as curvature changes respectto - =0,

from concave to convex surface curvature

variation is also
symmetric with
respect to ’f= 0
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S Convex Surface Curvature Effect
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e Reynolds Stress Profiles at x/L = —0.3

Emergence of a “knee point” at y,, /6 = 0.23 Alignment of the “knee point” relative to the
in the streamwise and spanwise stresses peaks in the wall-normal and shear stresses
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The “knee point” emerging in the streamwise & spanwise stresses indicates an internal
layer triggered by the change from adverse to favorable pressure gradient at bump foot
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An inner stress
peak develops in
the internal layer,
but its growth is
hampered by
flow stabilization

Original outer
peak decays due
to reduction in
velocity gradient
in outer region by
flow acceleration
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g Mixing Suppression in Accelerating Region

» Significant reduction in wall-normal and spanwise Reynolds stresses

2 2
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Shear Stress and Velocity Profiles in

Decelerating Region

')/ U U/uU,
0.007 :— /L =0 —16
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Deceleration leads to the
formation of a buffer layer
between low- and high-
speed regions; this buffer
zone acts like a free shear
layer and can be viewed
as a new internal layer

Shear stress peak shifts
from the near-wall region
to the free shear layer,
which also contains the
normal stress peaks
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— Streamwise Reynolds Stresses in
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Decelerating Region
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— Shear Stress and Velocity Profiles in
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e Recovery Region
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o Streamwise Reynolds Stresses in Recovery
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479 Y4/ ———— X/L =04
0.02 —— x/L = 0.5

Evolution of the inner peak in
streamwise stress is due to the
formation of new internal layer
in recovery region

0.015
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Outer peak decays as the shear
layer portion gradually disappears
due to the weakly favorable
pressure gradient in recovery zone

0.005
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Mean Velocity Profile Development in

Recovery Region

-+ viscous sublayer equation (U" =y!)
logarithmic layer equation (with x = 0.39 and C = 5.2)
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B x/L=09
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The logarithmic layer is still

in adjustment as the flow

nears the domain end:

= further development
length is needed
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s E<% Concluding Remarks

» Combination of low Reynolds number, favorable pressure gradient and convex
surface curvature leads to flow relaminarization/stabilization in the accelerating
region
= Patel and Head’s threshold value of 0.018 for the acceleration parameter was found to

reasonably predict the breakdown of logarithmic layer in the accelerating region
= As expected, RANS fails to detect this phenomenon

» Present DNS predicts incipient or very weak separation in the adverse pressure
gradient region
= |n comparison, RANS yields much stronger separation

» Internal layers form where the sense of streamwise pressure gradient changes
at the foot, apex and tail of the speed bump
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s E<% Future and Ongoing Work

» We would like to repeat the DNS at the Reynolds number of 3.5 million :
= 150 billion grid points for the domain span of 0.1L
= Considering a freestream Mach number of 0.3 (to reduce run times, resources are still limited)
=  Only feasible on Summit: DNS requires 1064 Summit nodes (or 6384 GPUSs)
= (0.6 million Summit node-hours (about 23.5 days of runtime) to run 13.5L/U,

» Currently running a simulation at the Reynolds number of 2 million :
= 10.2 billion grid points
= Resolution approaches DNS in certain regions and wall-resolved LES elsewhere
= Domain span of 0.08L, freestream Mach number of 0.2
= CPU code will take 50 days of run time for 10 L /U, using 20,000 Intel Skylake cores at NAS

= GPU code would need 216 V100s (with 32 GB memory) for this grid, but NAS does not own
that many V100s at present

= \We are unable to use our GPU code for this simulation
32
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5";“;"“ Further Questions or Comments?

» Questions and comments can be directed to:
= Dr. Ali Uzun: ali.uzun@nasa.gov or ali.uzun@nianet.org
= Dr. Mujeeb Malik: m.r.malik@nasa.gov
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